首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8993篇
  免费   461篇
  国内免费   76篇
化学   7425篇
晶体学   42篇
力学   164篇
数学   832篇
物理学   1067篇
  2023年   71篇
  2022年   40篇
  2021年   126篇
  2020年   213篇
  2019年   230篇
  2018年   129篇
  2017年   141篇
  2016年   293篇
  2015年   281篇
  2014年   289篇
  2013年   444篇
  2012年   686篇
  2011年   869篇
  2010年   405篇
  2009年   314篇
  2008年   718篇
  2007年   644篇
  2006年   652篇
  2005年   604篇
  2004年   539篇
  2003年   409篇
  2002年   358篇
  2001年   100篇
  2000年   58篇
  1999年   46篇
  1998年   40篇
  1997年   56篇
  1996年   77篇
  1995年   59篇
  1994年   34篇
  1993年   46篇
  1992年   34篇
  1991年   36篇
  1990年   24篇
  1989年   27篇
  1988年   20篇
  1987年   24篇
  1986年   18篇
  1985年   50篇
  1984年   30篇
  1983年   29篇
  1982年   38篇
  1981年   35篇
  1980年   32篇
  1979年   30篇
  1978年   18篇
  1977年   17篇
  1976年   20篇
  1975年   19篇
  1974年   14篇
排序方式: 共有9530条查询结果,搜索用时 62 毫秒
21.
Covalent and noncovalent chemical methods that use oligomeric lipophilic agents to solubilize silica nanoparticles in heptane and poly(α-olefin) (EPAO) solvents are described. While only modest solubilization efficiencies are seen with an octadecyl group, a variety of terminally functionalized polyisobutylene (PIB) derivatives are more efficient. Both covalent and noncovalent chemistry was found to be effective. Covalent modification solubilized up to 34 wt% of silica nanoparticles (SiNPs) as stable solutions in heptane or PAOs. Noncovalent modification was however more effective, solubilizing up to 70% of SiNPs in heptane or PAOs. The most successful covalent approach used PIB oligomers containing terminal triethoxysilane groups to covalently modify SiNPs. Alternatively, SiNPs that were first functionalized with amine groups could be solubilized in heptane or PAOs with polyisobutylene containing sulfonic acid groups using acid–base chemistry. Studies of these and other solubilization chemistry was also carried out using fluorescent labels, studies that confirmed the gravimetric analyses of the heptane-solubilized SiNPs. Transmission electron microscopy of a PAO solution of these solutions showed that these SiNPs were present as small aggregates dispersed in the PAOs.  相似文献   
22.
Polymeric membranes have shown tremendous promise for the separation of CO2 from flue gas streams. However, few systematic studies have been conducted to better understand the impact that chemical functionalities have on membrane-based gas separation performance. To address this gap, we herein describe the synthesis and gas separation performance of a series of vinyl-addition polynorbornenes bearing various CO2-philic functional groups. To facilitate direct comparison between functional groups, each material was designed to maintain a common polymer backbone. Though the incorporation of CO2-philic moieties within a dense polymeric membrane is frequently hypothesized to enhance CO2 solubility, and thereby increase CO2/N2 selectivity, our results demonstrate that the incorporation of CO2-philic groups onto a common polymer backbone do not necessarily result in increased gas separation performance. Experimental and computational results demonstrate that the incorporation of amidoxime groups onto a polynorbornene backbone increase CO2/N2 selectivity, whereas commonly employed ethereal side chains only increased permeability.  相似文献   
23.
Selective processing of the β-O-4 unit in lignin is essential for the efficient depolymerisation of this biopolymer and therefore its successful integration into a biorefinery set-up. An approach is described in which this unit is modified to incorporate a carboxylic ester with the goal of enabling the use of mild depolymerisation conditions. Inspired by preliminary results using a Cu/TEMPO/O2 system, a protocol was developed that gave the desired β-O-4-containing ester in high yield using certain dimeric model compounds. The optimised reaction conditions were then applied to an oligomeric lignin model system. Extensive 2D NMR analysis demonstrated that analogous chemistry could be achieved with the oligomeric substrate. Mild depolymerisation of the ester-containing oligomer delivered the expected aryl acid monomer.  相似文献   
24.
Density functional studies of the edges of single-layer 1H-MoS2 are presented. This phase presents a rich variability of edges that can influence the morphology and properties of MoS2 nano-objects, play an important role in industrial chemical processes, and find future applications in energy storage, electronics and spintronics. The so-called Mo-100 %S edges vertical S-dimers were confirmed to be stable, however the authors also identified a family of metastable edges combining Mo atoms linked by two-electron donor symmetrical disulfide ligands and four-electron donor unsymmetrical disulfide ligands. These may be entropically favored, potentially stabilizing them at high temperatures as a “liquid edge” phase. For Mo-50 %S edges, S-bridge structures with 3× periodicity along the edge are the most stable, compatible with a Peierls’ distortion arising from the d-bands of the edge Mo atoms. An additional explanation for this periodicity is proposed through the formation of 3-center bonds.  相似文献   
25.
We have been puzzled by the involvement of weak organic and inorganic bases in the synthesis of metal–N-heterocyclic carbene (NHC) complexes. Such bases are insufficiently strong to permit the presumed required deprotonation of the azolium salt (the carbene precursor) prior to metal binding. Experimental and computational studies provide support for a base-assisted concerted process that does not require free NHC formation. The synthetic protocol was found applicable to a number of transition-metal- and main-group-centered NHC compounds and could become the synthetic route of choice to form M–NHC bonds.  相似文献   
26.
Hydride abstraction from diarylamines with the trityl ion is explored in an attempt to generate a stable diarylnitrenium ion, Ar2N+. Sequential H-atom abstraction reactions ensue. The first H-atom abstraction leads to intensely colored aminium radical cations, Ar2NH.+, some of which are quite stable. However, most undergo a second H-atom abstraction leading to ammonium ions, Ar2NH2+. In the absence of a ready source of H-atoms, a unique self-abstraction reaction occurs when Ar=Me5C6, leading to a novel iminium radical cation, Ar=N.+Ar, which decays via a second self H-atom abstraction reaction to give a stable iminium ion, Ar=N+HAr. These products differ substantially from those derived via photochemically produced diarylnitrenium ions.  相似文献   
27.
A late-stage functionalization of the aromatic ring in amino acid derivatives is described. The key step is a copper-catalysed diversification of a boronate ester by amination (Chan–Lam reaction) that can be carried out on a complex β-aryl-β-amino acid scaffold. This not only considerably extends the substrate scope of amination partners, but also delivers an array of potent and selective integrin inhibitors as potential treatment agents of idiopathic pulmonary fibrosis (IPF). This versatile chemical strategy, which is amenable to high-throughput-array protocols, allows the installation of pharmaceutically valuable heteroaromatic fragments at a late stage by direct coupling to NH heterocycles, leading to compounds with drug-like attributes. It thus constitutes a useful addition to the medicinal chemist's repertoire.  相似文献   
28.
Protein–protein interactions (PPIs) provide a rich source of potential targets for drug discovery and biomedical science research. However, the identification of structural-diverse starting points for discovery of PPI inhibitors remains a significant challenge. Activity-directed synthesis (ADS), a function-driven discovery approach, was harnessed in the discovery of the p53/hDM2 PPI. Over two rounds of ADS, 346 microscale reactions were performed, with prioritisation on the basis of the activity of the resulting product mixtures. Four distinct and novel series of PPI inhibitors were discovered that, through biophysical characterisation, were shown to have promising ligand efficiencies. It was thus shown that ADS can facilitate ligand discovery for a target that does not have a defined small-molecule binding site, and can provide distinctive starting points for the discovery of PPI inhibitors.  相似文献   
29.
Tetrahedron DNA structures were formed by the assembly of three-way junction ( TWJ ) oligonucleotides containing O6-2′-deoxyguanosine-alkylene-O6-2′-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2′-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6-alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.  相似文献   
30.
Lithium (Li) metal has attracted significant attention in areas that range from basic research to various commercial applications due to its high theoretical specific capacity (3860 mA h g−1) and low electrochemical potential (−3.04 vs. standard hydrogen electrode). However, dendrites often form on the surfaces of Li metal anodes during cycling and thus lead to battery failure and, in some cases, raise safety concerns. To overcome this problem, a variety of approaches that vary the electrolyte, membrane, and/or anode have been proposed. Among these efforts, the use of three-dimensional frameworks as Li hosts, which can homogenize and minimize the current density at the anode surface, is an effective approach to suppress the formation of Li dendrites. Herein, we describe the development of using carbon-based materials as Li hosts. While these materials can be fabricated into a variety of porous structures, they have a number of intrinsic advantages including low costs, high specific surface areas, high electrical conductivities, and wide electrochemical stabilities. After briefly summarizing the formation mechanisms of Li dendrites, various methods for controlling structural and surface chemistry will be described for different types of carbon-based materials from the viewpoint of improving their performance as Li hosts. Finally, we provide perspective on the future development of Li host materials needed to meet the requirements for their use in flexible and wearable devices and other contemporary energy storage techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号